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ON THE STABILITY OF THE RAILROAD TRACK
*
IN THE VERTICAL PLANE )
by
Arnold D. Kerrl)

SUMMARY

The paper reviews and discusses various aspects of railroad track buck-
ling in the vertical'plane. Buckling tests of straight tracks are reviewed
first. A review of the published analyses on vertical track buckling re-
veals that they may be grouped into two main categories. In one category,
the authors assume that the track is an elastic beam which is continuously
supported by a Winkler base, before as well as during buckling. In the other
group, the authors assume that the track is a beam of uniform weight, which
rests on a "rigid" base and that the buckling load is reached when part of
the track lifts itself off the base. To clarify the vaiidiéy of some of the
assumptions made, two simple models which represent the assumptions made are
studied first. This is followed by a review of the literature. It is shown
that the assumption of continuous elastic support during buckling is not
admissible. It is also shown that for buckling with lift-off, the use of

linearized analyses may lead to erroneous results,

INTRODUCTION
A conventional railroad track consists of two parallel steel rail strings
attached to closely spaced cross~ties, which are imbedded in a gravel base,
called the ballast, as shown Fig. 1. The rail ends are joined by means of

slotted web plates and bolts, thus forming an expandable joint.

* -
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Because a rail of length L, when subjected to a temperature variation
AT, changes its length by

AL = cATL

the gap~-width in the joint increases during the winter and decreases during
the summer. For a certain temperature increase, the gap closes, A further
increase in temperature induces compression forces in the rail string, which
may buckle the track.

The expandable rail joint weakens the track structurally. It in-
creases the maintenance costs of the track and the trains, it increases the
power consumption of a running train, and the frequent periodic noise generated
by a train rolling over such joints is a source of discomfort to many passen-
gers.

Therefore, it is only natural that since the early dayg of railroad track
construction, there was a desire to eliminate some of the joints by increasing
the length of the rails; with the elimination of all joints, i.e., with the
use of a welded track, as the final goal.

For high speed trains, the continuously welded track is a necessity, For
this reason, during the past decade, thousands of miles of welded track were
installed throughout the world. However, the complete elimination of joints
increases the possibility of buckling during the hot summer days and, indeed,
a number of derailments caused by buckled tracks were recently reported in the
literature by C.F. Rose {[1]. The introduction of the welded track and the re-

ported accidents, due to buckled tracks, make it necessary to re-examine the

state of the art of the track instabilities, The purpose of the present

paper is to review the literature on track buckling in the vertical plane.




TEST RESULTS

Tests to determine the response of the track, were described by various

investigators already in the past century. These results and more recent ones
are published in various national and international journals of railroad
engineering*). An extensive collection of track test dats was presented in
five papers by O. Ammann and C.v. Gruenewaldt (2] [37 in 1928, 1929, 1932 and
1934, and in monographs by A. Wasiutyfski [4] published in 1937,by M.T.
Chlenov [5] published in 1940, and by N.B. Zverev [6] published in 1962.

In 1927, A.Wéhrl [7] reported that cases of buckling of the conventional
railroad track came to his attention, although he could not find any references
in the literature.

An early experimental investigation of track instability, due to axial
forces, is described in Part IV of the study by Ammann and v. Gruenewaldt pub-
lished in 1932, The axial forces were induced in the rails ﬁy means of two
hydraulic jacks with a total capacity of up to 290 tons, Prior to loading,
the joint gaps in the test tracks were filled with metal strips in order to
create "continuity" in the rail and to prevent large axial displacements, In
the close vicinity of the jacks, the track was preloaded vertically, in order
to prevent track buckling at the jacks.

Buckling tests were conducted on tracks of the Baden-type (Badischer
Oberbau) and the K-type (Reichsoberbau K) with wood and metal ties, respec-
tively. The rail lengths used in the track were 12, 15, 30, and 60 meters,

In all tests of the straight K-type-track on metal ties, buckling took

place by lift-off from the ballast. The length of the buckling curve was

about 30 meters,

*
) A major source of early results is the journal '"Organ fur die Fortschritte
des Eisenbahnwesens"




Typical buckling modes are shown in Fig. 2. The occurance of cusps in
the vertical buckling curves of the K-type track was attributed by the authors
to the fact that the K-type joint plates were much weaker than those in the
Baden-type joint. The authors also report that during the tests of the Baden-
type tracks, when th; buckling load was reached, the track first snapped up,
stayed in this position for a short while, and then fell sideways to the
ground. Since the K-type track stayed up after buckling, they attributed
this sidesway to the smaller lateral rigidity of the Baden-type track.

In all of these tests, on the straight track, no noticeable side dis-
placements were observed prior to buckling.

Results of other buckling tests were reported by J. Nemcsek [8] in 1933,
F. Raab [ 9] in 1934, M.T. Chlenov [5] in 1940, Italian Railways [10] in 1942,
M. Sonneville and M. Sergé [11] in 1948, F. Reab [12] in 1956, M. Numata [13]
in 1957, the Permanent Way Society of Japan [14] in 1958, M.fNumata (15] in
1960, Unyi Béla [16] in 1960, F. Birmann and F. Raab [17] in 1960,
D.L. Bartlett, J. Tuora, and G.R. Smith [18] in 1961, N.B. Zverev [6]
in 1962, and E.M. Bromberg [19] in 1966. In many tests, the axial forces were
induced by heating the rails with electric currents. According to the published
results in these tests the track buckled sideways. A possible explanation of

this phenomenon was given recently by A.D. Kerr [20].

In the railroad literature, the statement is often encountered that
according to analytical results, buckling in the vertical plane can not take
place. Such statements seem to contradict various test results,

This situation suggests the need for a critical review of the available
analyses on track buckling in the vertical plane. This is necessary, parti-

cularly in view of some obvious conceptual, as well as formulation, errors con-

tained in the relevant literature.




GENERAL DISCUSSION OF VERTICAL BUCKLING

A uniform temperature increase in a welded straight track induces in the
rails, due to constrained thermal expansions, an axial compression force Nt’ as
shown in Fig. 3(a). Tor large values of Nt’ the track may buckle out vertically.
In the lift-off region of length g, part of the thermal expansions are re-
leased. This results in a reduction of the axial force to'ﬁt. In the ad-
joining regions, each -of length a, due to ballast resistance to axial dis-
placements of the track, the constrained thermal expansions vary; so does the
axial force §t<N< Nt’ as shown in Fig. 3(b)* According to above observations,
vertical buckling is a local phenomenon. That is, except for the length (g +22),
the track is not affected by it,

The published papers which analyze vertical track buckling, may be grouped
into two main categories. In one group, the authors assume that the track is
a weightless beam which is continuously supported on a Winkler base, before as
well as during buckling. In the other group, the authors assume that the track
is a beam of uniform weight which rests on a "rigid" base, and the buckling
load is reached when part of the track lifts itself off the base.

The first point which requires clarification is, which of these two
assumptions is closer to reality. In particular, it has to be established, in
view of the observed lift-off during vertical buckling, if the analyses which
are based on the assumption that the track remains continuously supported during
buckling, will yield reasonable buckling loads.

To study these and related questions, in the following we comsider first
two models, which exhibit the respective buckling mechanism, but are amenable to
simple analyses.

1) Model of track on elastic base

We consider first the model shown in Fig. &. It comnsists of four "rigid"

%
)This variation is not necessarily linear.
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bars constrained at the intercomnecting joints by spiral springs. These
springs represent the "flexural rigidity" of the track in the vertical direc-
tion. It is assumed, that only joint 3, which is constrained by a straight
spring, can move vertically. The other joints can only slide horizontally,
The straight spring represents the "elastic foundation" of the track. -In or-
der to include the effect of geometric imperfections, it is assumed that in
the unstressed state bars 234 exhibit an imperfection 90, as shown in
Fig. 4(a).

The shown model is of one degree of freedom. Hence, its equilibrium
states are described by one algebraic equation, with § as unknown.

To determine the equilibrium states of the chosen system, we consider
the free body diagram of bar 34, shown in Fig. 5, and set up the moment equiii-

brium about point 4. The resulting equation is
36(9 ~0_) + 5 Lcosd - PLsing = 0 (1)

where s is the spring constant of the spiral springs. Noting that the force
in the straight spring is

S =kL(sin8 - sin ) 2)
where k is the spring constant, equ., (1) may be written (for sinf # 0) as

* . .
* (C] -90).+ k" (sin8 -sxnso)cose

Po= gin 6 (3
where
*#_PL % kLB
P=3 k= &s (%)

Equilibrium equation (3) was evaluated for 0<9<%, k*=0.1 and 0,7 and
6°==0 and 1°, and the determined equilibrium branches are shown in Fig. 6.

It may be seen that when the structure is initially straight (9°==0),

it remains straight until P reaches the value P, at which a deformed
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equilibrium branch bifurcates. When 60950, the structure does not exhibit
a bifurcation point. Note also the effect of the parameter k* upon the post-
buckling response.

In order to establish which of the determined equilibrium states are
stable, we utilize the Lagrange energy criterion. According to this cri-
terion, an equilibrium configuration of a conrervative mechanical system is
stable, if the corresponding total potential energy has & proper minimum with
respect to all kinematically admissible displacements.

The considered system is conservative. Its total potential energy Il is
-r_l_u - 2 k* -adt 2 . * -
b5 % (8 60) + 3 (sinb 51n8°) P (coseo cosB) (5)

Above equation was evaluated for 60 =0 and k=0.7 and the results are presented
as energy level curves in Fig. 7(a). The corresponding equilibrium branch
based on equ. (1), is presented in Fig. 7(b).

First, it should be noted, that according to the princ}ple of stationary
total potential energy

on _
x-o

yields the equilibrium equation (1). Hence, points on the energy level curves

with a horizontal tangent, correspond to equilibrium configurations, This

correspondence may be easily verified by correlating the graphs in Fig. 7.
According to the Lagrange stability criterion, minima on the energy

level curves correspond to stable, and maxima as well as horizomtal inflection

points to unstable equilibrium configurations. Hence, according to the [I-curves

of Fig. 7, the undeformed equilibrium states for PdtPcr are stable and those

for Pchr are unstable., It also follows that the equilibrium states on the

branch AL are unstable and those on branch LB are stable. (Point L is defined

as the lowest point on the deformed branch.)

The shown equilibrium branch ALB exhibits a load PL< Pcr’ which should

be considered as the "safe" buckling load for design purposes. This is so,
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because for P<}?L there exists only one equilibrium position which is stable,
whereas for a given PL< P<Pcr there exist three equilibrium positions and the
undeformed system, when sufficiently perturbed, may snap into the position on
the stable deformed branch with large deformations., For additional details
on this subject the reader is referred to the papers by Th, v. RArmin and
A.D. Kerr [21] and A.D. Kerr [22].

The response of an actual railroad track is governed not by an algebraic
equation nonlinear in §, such as (1), but by nonlinear differential equationms.
Because it is very difficult to solve these equations, most investigators used
linearized equations. To study the effect of linearizations, equilibrium equa-

tion (1) is linearized in 8. It becomes
®-8.) + k¥ (0 -6,) - P¥g =0 (6)

or rewritten, for 6 #0,
. (1+Kk*) (8 -8,)

P 5 (7)

For the initially straight system, i.,e., when e°=0, equ. (6) reduces
to

(1+x*-P*)0=0 (8)

Equation (8) corresponds to the usual linear eigenvalue problem of stability
theory. It is satisfied for the trivial solution 8§ =0, For 6 #0, equ. (8)
is satisfied when

* o *
Pcr 1+k 9

This is the Euler buckling load for the system under consideration, However,

because the post-buckling curve exhibits a PL load, it mey be concluded that

for the analyzed problem, Pcr is not a safe buckling load [22].

r—rr——
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To show the effect of linearization on the equation with 8°¢0, equ. (7)
was evaluated for k* =0.1 and 0.7 and eo= 1 , and the resulting branches are
shown in Fig. 6. It may be seen that for small deformations the actual and
linearized equilibrium branches coalesce. However, as § increases the branches
diverge and exhibit different responses. It should be noted that as P-.Pcr,
on the linearized branch 8 -», whereas the actual branch exhibits a finite
value of 8. Thus, the linearized branch for e°=0 or 00#0, and large § does

'not represent, even approximately, the actual problem.

2) Model of track with lift-off

This model is similar to the one discussed before, except that now the
weight of the system is taken into consideration and joint 3 rests on a "rigid"
base and is free to lift-off, as shown in Fig. 8.

This structure was recently analyzed by A,D. Kerr [20]. Proceeding as

above, it may be shown that the equilibrium equation for the non-trivial states

is
" ® -90) + q*cose
B - sin® (10)
where
L2
"= &= (11)

The corresponding equilibrium branches for eo =0 and different values
of q* are shown in Fig. 9. Note that for the initially straight structure,
9 =0 is an equilibrium branch for amy ¢>0. Also of interest, is the diff'er-
ent character of the deformed equilibrium branches for q>0 as compared to the
one for q=0. In particular, that the branch for q=0 and 8 >0 intersects the
undeformed branch at P*-I.O., whereas all branches which take the weight into
consideration, do not intersect the undeformed branch but approach it asymptoti-

cally at infinity.

To determine the stability of the determined equilibrium-states, note

9




that the total potential energy Il is i

-gé- =4£02 - P (1-cosf)+ q* sinb (12)

The corresponding energy level curves for q*=0.06 are shown in Fig. 10(a).
The corresponding equilibrium branches are shown (as solid lines) in Fig. 10(b).

Accordi.ng_ to these graphs, the undeformed equilibrium states (with 6 =0)
are stable for any P and q>0, the equilibrium positions on branch AL are un=-
stable, and the equilibrium positions on branch LB are stable.

It should be noted, however, that with increasing axial force P, the
energy harriers AJl are decreasing, Hence, with increasing P, the disturbances
which are sufficient to overcome All and snap the system into the deformed
equilibrium state, are decreasing. Therefore, although the straight equili-

brium state is theoretically stable for any P> 0, from a practical point of

view the system becomes less stable with increasing P.

®
An actual track always deviates slightly from a perfectly straight line.

To study the affect of very small deviations in the vertical plane, equ. (10)
was evaluated for 90= 0°%4° 1°295°% The obtained equilibrium branches are shown ih
Fig., 11. It may be seen that for 6°=1° and P increasing from zero, the struc-
ture does not deform until P* reaches the value P:. At P:, it snaps out into
a strongly deformed equilibrium state on branch LB, as indicated in Fig. 11,
The load P, is denoted in the stability literature as the "upper buck-
ling load". Note, however, that under the influence of outside disturbances,
such as vibrations or impulse loads, the system may snap-out &t smaller loads

P <P<P . Hence, also in this case, the "safe” buckling load is P,.

To study the effect of linearization, equilibrium equation (10) was

linearized. 1t becomes %
* (e - e o) + q

Pz (13)

The corresponding graphs are shown in Fig. 9 and Fig. 1l as dashed lines.
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It is of importance to note that with increasing 8 all linearized branches

approach asymptotically the value P*==1, which is the Euler buckling load for

q-= o’althnugh for the actual problem for which q > o such a load has no meaning.
The expression of I, which corresponds to the linearized equation, is

quadratic in 6. Namely

I, *92 %
3S~§92-P >+ 48 (14)

According to the energy level curves, which are based on equ. (14), the equili-
brium -branches of the linearized analysis, for 6 >0, are.unstable. Thus, |
according to the linearized analysis, there does not exist a stable deformed

state as shown in Fig. 8; a result which contradicts reality. This finding

suggests that a linearized analysis may not be suitable for the analysis of the
track with 1ift off.

The above discussion should be taken into comsideration when evaluating
the validity of the claims by H. Meier [237], F. Raab [247], and M.T. Huber [25)]
that, according to their analyses, the straight track can not buckle in the
vertical plane.

For additional results and comments, as well as for an analysis of a
model subjected to thermal loads, the reader is referred to Ref. [207. The
analyses and graphs presented in Ref. [20] reveal that the P, value for the

L

model subjected to a mechanical force is much lower than the corresponding

PL value due to thermal stresses. This may be an indication why in the tests
by Ammann and v. Gruenewaldt [2] and Nemcsek [ 8],who used jacks to induce com-
pression forces,the track buckled predéminately in the vertical plane, where
as in the tests which induce compression forces by heating the rails, buckling

occurs predominately in the horizontal plane,

3) Comparison of results

Comparing the graphs shown in Fig. 6 with those of Fig. 9 and Fig. 11,

it becomes obvious that the post-buckling response curves for these two

11 i
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models are very different. Since the "safe' buckling load is determined from
the post~buckling response curves, it appears that at least one of the models
is not suitable for the representation of vertical buckling. This situation, as
well as the other findings,will be referred to in the following when reviewing

the literature on vertical buckling.

THE BUCKLING ANALYSIS OF THE TRACK AS A
COMPRESSED BEAM ON A CONTINUOUS WINKLER BASE

A compressed beam on a Winkler base is shown in Fig. 12. This model was
utilized by F. Corini [26), M.T. Huber [27], and recently by E. Engel [28] for
the analysis ot vertical buckling.

To describe the beam response, they used the differential equation

d% . a% )
EISH+P Satkw=0 (15)

where w is the vertical deflection of the beam, EI is its flegxural rigidity

in the vertical plane, P is a constant compression force, and k is the founda-

tion modulus.

Equ. (15) is a fourth order linear ordinary differential equation with

constant coefficients. A number of solutions for different boundary condi-

tions are presented in the books by M. Hetenyi [29] and A.R. Rzhanicyn [30].

For the infinite beam the critical buckling load is

P = 24 kEI (16)

cr

A T

and the corresponding buckling mode is an infinite sine wave, as shown in

Fig. 13. This buckling mode differs greatly from the one observed in actual

tests (Fig. 3), and therefore, it is reasonable to anticipate also the corres-
ponding Pcr will differ substantimlly from the actual buckling load.
The determination of Pcr for the compressed infinite beam on a Winkler

base, subjected also to its own weight, was discussed by A.D. Kerr [317 in 1969.
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There it was shown that when the foundation response is assumed to be linear,
as in equ. (15), a uniform weight of the beam has no effect upon the critical
load, P __.
cr
These observations, in conjunction with the findings of the previous
section suggest that the model, in which the foundation is attached continuously
to the beam before and after buckling, is not suitable for track buckling in

the vertical plane.

THE BUCKLING ANALYSIS OF A TRACK
AS A COMPRESSED BEAM ON A RIGID BASE

A compressed beam which rests on a '"rigid" base and is subjected to its
own weight q (per unit length) is shown in Fig. l4. This model was used for
the analysis of vertical track buckling by H. Kayser [32], C.v. Gruenewaldt [33],
A. Bloch [34], H.v. Sanden [35], K.N. Mishchenko [36], H. Lederle [37],
F. Corini [26], A. Martinet [38], H. Meier [39], M.T. Huber 1257, R. Lévi [40],
K.N. Mishchenko [41), A.A. Krivobodrov [42], H. Rubin [43], F. Schweda [44],
E. Stagni [45], R. Sauvage [46], and others,

A numbe£ of these investigators (Corini, Mishchenko, Martinet, Huber,

Lederle, and Sauvage), based their analyses on the linear differential equa-

tion
4y 2
et dg+rSh=-q (16)

where q is the uniform weight of the track. In the following, it is shown
that this linear equation is not suitable for the determination of the buck-
ling load for lift-off problems. As an example, we review first the often
quoted analysis by Martinet.

Martinet assumed that the deformations of the beam part’which lifts off

the base’are governed by a linear differential equation. His formulation

13




consists of the differential equation (16) and the boundary conditions (see

Fig. 15)
w(t £/2) = 0 ]

‘x=i 2/2 ’ 17)

dw
dx

‘x=i L/2

Since a fourth order ordinary differential equation requires only four boundary
conditions, the third condition in (17) is utilized for the determination of the
unknown wave length £.

The general solution of differential equation (16) is

w(x) = Ay cos (A x) + Ag sin (A %) +A3%’5+A4--§I—,x2 (18)

= [2
A= (19)

Because theobserved deflection shapes are symmetric, it follows that for

where

the assumed origin of the coordinate system, as shown in Fig. 15, w(x) is even

in x. Thus

A, =0 ; A, =0 (20)
and

w(x)=A, cos (\x)+ A, -2-‘; x2 (21)

Substitution of above expression into the first two boundary conditions in (17),

and solving the resulting equations for A, and A, yields

2
EI qf EI
Ay =- 3 \ ; Ag=—"r+ qz (22)
Pacos M;i 8P P
2/
14




w(x) = q {i—i,-(l-z-ili +&01-4(2)7) (23)
2

where £ is an as yet undetermined quantity.

For x =0, above expression reduces te

o [EI 1 L2
w(o)=q-{53 (l-mﬁ)+ Lo (26)
2
or rewritten
EL __1 [/;__1 N . Qg7
w(o) g = Gaye AL w2/ T ] (23)

Substitution of (23) into the third equation in (17) yields the condition

for the determination of ¢. It is
\ £
w2 () = (%) (26)
Thus, the third'condition in (17) is satisfied when

l£=80985, se0 3 oo (27)

Using the smallest root in (27), Martinet, noting that P=)2EI, obtained the
relation

P=80.73 23 (28)
and, in conjunction with equ. (25), the relation

*)
4
w(o) =v%— = 15.7 $El (29)
Taking into consideration that the force in the lift-off region drops

due to buckling)from

N =aEAT® (30)

*) Note that in the railroad literature [47], equ. (29) is sometimes presented

4
as P=n,NqEI/w(o) andequ. (28) as £ =nVEIW(0)/q where n, and n, are.

coefficients.
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to ‘Nt = P, as shown in Fig. 3, Martinet derived the relation

2 2
p o -l Al S £>
N -P ‘c\/r(62.566 FIZ " &4 31)

where A is the cross-sectional area and r is a constant friction force per unit
length of track due to axial displacements in the adjoining regions. A different

equation for (N _-P), is presented in Ref. [47].
For the assumed values-q = 200 kg/m, E = 22x10° kg/m?®, I = 3#10"5m4,

A= 0.011m?, o = 10,5%x10 "®per °6, and r=400 kg/m, Martinet, utilizing equ's (29)

to (31), prepared the following table!

TABLE 1I:
£ m w(o) m (N, -P) kg P kg N, kg T°
assumed equ. (29) equ. (31) equ. (28) |=(N_-P)+P equ. (30)

15 0.037 3900 236 800 240 700 94.7
20 0.117 12 880 133 200 146 080 57.5
25 0.285 29 020 85 250 114 270 44.9
27.4 0.41 40 210 70 970 111 180 43,7
30 0.59 55420 59 200 114 620 45.1
40 1.87 129670 33 300 162 970 64.1
50 4.56 333030 21 310 354 340 139

The corresponding graph is shown in Fig. 16. According to this graph,
no buckling can take place for a temperature increase less than T=43.7°C.
Note that Martinet's stability criterion is of the same nature as the condition

P<P discussed above,

L’
In order to analyze the procedure used and the results obtained by Martinet,

it should be noted that equ. (23) is the deflection expression of a simply

supported beam shown in Fig. 17. The corresponding graphs are shown in Fig. 18.

The equilibrium branch for w(x) >0 is shown as solid line and the branch for

w(x) <o, which does not exist for the problem under consideration, is shown as

dashed line. The vertical axis is the equilibrium branch for the undeformed

state, w(x)=o.

16
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According to these branches for )\{ <t there exists, for a given P,
only one equilibrium position with w(x) = o, whereas for 3¢ >m, for a
given P also a deformed position is possible, It is of interest to note
that the branch for w(x) # o approaches assymptotically the value 3¢ =.

Since AL =17 is the lowest eigenvlue for the problem under consideration, it
could be concluded that, for the problem shown in Fig. 17, buckling may take
place for PZPcr; Pcr being the Euler lead (for examples, see [ 39] p, 372
and [44) p. 255). This, however, is not correct.

" To gain a better understanding of the obtained results, consider the
equilibrium branches of a related problem, shown in Fig. 9. These graphs
suggest that the deformed equilibrium branch in Fig. 18 approaches assymp-
totically the lowest eigenvalue Af =11, because it is based on the linearized
equilibrium equation (16), and that the equilibrium branch of the actual
problem after reaching the corresponding load PL, will rise.?wnotonically.

On the basis of the model study, it may also be conjectured that the branch
to the left of point L will bge unstable and that part of the branch to the
right of L will be stable. Thus, the stable deformed configurations observed
in tests, and shown in Fig. 16, will be on the rising branch to the right of
point L.

The model study also suggests thag.the entire deformed equilibrium branch,
shown in Fig. 18, is unstable That is, equilibrium states on this branch are
not the stable deformed equilibrium tonfigurations observed in tests.,

In this connection it should be noted, that the roots of the additional
condition (26) determine specific points on the equilibrium branches in Fig. 18.
The point which corresponds to the lowest root is denoted by (:). The equa-~
tions (28) and (29) are its coordinates. Thus, equ, (28) and (29) specify

a deformed equilibrium state which is unstable.
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Martinet obtained the rising branch shown in Fig. 16 by taking into
consideration the drop of the axial force due to buckling deformations. He
correlated the temperature increase T° with the coordinates of the equili-
brium points P, w(o), and £ by means of equ. (31), as shown in Table 1 and
Fig. 16, and then concluded that the resulting rising w(o)-branch is stable.
Although it is physically reasonable that a rising branch of this type will be
stable, it is questionable if expressions (28) and (29) are valid for this branch.

In view of the deviation of the linearized branch from the actual one,
as indicated in Fig. 9 and Fig. 11, it is also questionable whether the linear for-
mulation used by Martinet, and the other investigators, is suitable for the
determination of the "safe'" temperature increase (43.7°C in Martinet's example),

In 1950, Mishchenko [41] reviewed the analysis by Martinet. His objec-
tion was that equ. (31),which takes into consideration the stress release due
to buckling, is not sufficiently accurate, In view of the above*discussion,
it appears that a major objection to the Martinet analysis is that it is based
on the linear differential equation (16) which may not be suitable for the determina-
tion of the point L for lift-off problem.

Whereas Martinet and various other authors based their analyses on the
differential equation (16) a number of the other authors (for example,

H.v. Sanden, H. Meier, and K.N. Mishchenko [41])}used the energy method.
This approach is discussed in the following. N

Accordiﬁg to the principle of stationary total potential energy, the

condition

6 =0 (32)

yields the equilibrium equation and the necessary boundary conditions. There-
fore, quadratic terms in ]] yield linear terms in the differential equation and

the corresponding boundary conditions.
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An inspection of the often quoted analysis by H. Meier [39] reveals that,
for the case in which it is assumed that the axial force Ntis not affected by

the deformations due to buckling, the corresponding II used,is quadratic., Namely

L2 1/a%w\  Nesaw\e
m =£2[%- T -7 ) e 33
£

Considering + £/2 as variable end points, it may be shown,using variational calcu-
lus, that the above [ corresponds to the linear equilibrium equation (16) and the
boundary conditions given in (17). Thus, Meier's "simplified" analysis [39],

in which the effects of the stress release due to buckling is neglected, yields,

for a straight track

EI
w . (o) = 16 %—5- (34)

and 1
L= 2rr./ ' (35)

t

which is nothing more but an approximate solution of equ. (16) and the boundary
conditions in (17). Note, however, that the axial force in Martinet's equations
(28) and (29) i& Kt, whereas the one in Meier's equations (34) and (35), it is N_.
Note also that Wmin(o) in (34) is identical with w(o) in equ. (29), as may be seen
from Fig. 18, and that equ. (35) is essentially equal to equ. (28), since (2\&5%)9330.

However, unlike Martinet and Mishchenko [41], Meier uses a different stability
criterion. This criterion is explained in the following on the simple model shown
in Fig. 8 and its response shown in Fig. 9. It is based on the fact that if for
eo=0 and a fixed axial load, say P*=1.2, joint 3 is forced up to the level £,,
namely to the corresponding unstable equilibrium state, then the structure may
buckle out and come to rest at the corresponding point on the equilibrium branch
LB.

According to the procedure used by Meier, first the largest anticipated com-
pression force in the track is determined from the dJifference of the highest antici-
pated temperatures in a given geographic region and the "neutral" temperature at

which the rails were built in (say, N =200 tons). This is followed by an
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analytical determination of the corresponding f, =ﬂ%dn(o)and 2 values using
equations (34) and (35)., The obtained f, value is then compared with an fo
value which is the largest admissible track imperfection for the determined g,
established by observing railroad tracks in the field. If

f< £, (36)
then, according to Meier, the track is safe,

Thus, for the criterion by Meier only the part AL of the deformed branch is
of interest. Therefore, for small values of f, the linearized analysis may be
sufficient, as shown in Fig. 9.

Although the knowledge of f1==wmin(°)is useful for track maintenance, namely
a compressed track should not be lifted up by £ £f,, the validity of Meier's
criterion (36) as a general stability criterion, is questionable. This is so
because, as shown in the model study, even an initially straight track may buckle
out if sufficient energy is introduced in the track to overcome the corresponding
energy barrier. Such disturbances may be caused by a wave which travels ahéad of a
a high speed train, by small disturbances in the soil near the track, etc., and
it is difficult to convert such energy inputs into f_ values.

When evaluating the procedure by Meier, also the difference in the equilibrium
branches of the intially straight track and the track with initial imperfections
(as shown in Fig. 11) should be noted.

Recently, E. Stagni [45] discussed Meier's results and concluded that a cri-
terion based on the point L is safer. Realizing the shortcomings of a quadratic J]
for the determination of point L, Stagni then forms a [ expression which contains
also terms of fourth power. In this conmection, it should be noted that this may
not be sufficient for the determination of PL, as shown recently by A.D. Kerr {22],
and therefore the analysis of the track with lift-off may require a more exact

formulation.
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